Limits and Continuity

In Calculus |, we learned the concept of continuity. If we have a function y = f(x), and if
we have a specified value of x, such as a, we can ask whether or not the function is
continuous at a. In order for the function to be continuous at a, all three of the following
conditions must be met:

1.  fla) must be defined. In other words, a must be in the domain of /.

2. lim,.,, f{x) must exist.

3. lim,., f{x) must be equal to f{a), i.e., lim,., fix) = fla).

If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.

Bear in mind, we adhere to the following conventions:

e The domain of the function excludes any values of x for which f{x) is imaginary or
undefined. For instance, the domain of f{x) = ,/x excludes all negative values of x,
and the domain of fix) = —L= excludes 3.

e When we say that a limit “exists,” we mean it has a real-number value, not an
imaginary value and not an infinite value. Thus, lim,., 41 —x does not exist, and
lim,_g XLZ does not exist. We can say lim,_ XLZ = oo, but this does not alter the fact

that lim,._ XLZ does not exist!

Books or teacher may sometimes cite only the third condition listed above. Their thinking is
that saying lim,., f{x) = f(a) presupposes both condition #1 and condition #2. However, |
believe it is best to think of it as three separate conditions, and to check them in the order |
have specified. First check condition #1; if it fails, go no further. If condition #1 is met, then
check condition #2; if it fails, go no further. If condition #2 is met, then check condition #3.

If we know in advance (based on some previously established theorem) that the function fis
continuous at a value a, then we can evaluate lim,., f{x) by simple “plug and chug,” i.e., by
simply evaluating f(a).

For instance, we have a theorem that says a polynomial function is continuous for all real
values of x. Hence, to evaluate lim,.s (3x> — 7x + 4), we just plug in 5 for x, giving us 44.

We also have a theorem that says a rational function (i.e., a ratio of polynomials) is
continuous for any value of x where the denominator is nonzero. Hence, to evaluate
x+15

lim,_¢ — we just plug in 6 for x, giving us 7.

If f{x) is not continuous at a, then lim,., f{x) cannot be evaluated by plug and chug, but this
does not mean the limit doesn’t exist. It may or may not exist. We have to explore further.



For instance, you cannot evaluate lim,. 1 sinx by plug and chug, because f(x) = L sinx has
a discontinuity at 0. Instead, we may use L’Hospital’'s Rule: lim,. + sinx = lim,.o cosx = 1.
(Alternatively, we could apply the Squeeze Theorem, since the function f{(x) is sandwiched
between the functions y = 1 and y = cosx.)

Limits at discontinuities can sometimes be evaulated via algebraic manipulations.
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A piecewise-defined function is a function defined not by one formula, but by two or more
formulas, where each formula applies to a specified interval and the intervals are
non-overlapping. For example, consider the function f(x) = x? for x € (-0, 3), —%x + 6 for
x € [3,0). This function is piecewise-defined. Its domain is (-0, ). Bear in mind, it is not
two functions, it is one function, but the function is defined by two different formulas. The
formula x? applies applies when x < 3. The formula —%x + 6 applies when x > 3. Because
the intervals (-, 3) and [3, ) are non-overlapping, our definition will never produce two
values of y from one value of x (in other words, it is a legitimate function). Its graph will
pass the vertical line test. Its graph consists of part of the parabola y = x? “spliced together”
with part of the line y = —%x + 6. Note that /{3) = 4. When drawing the graph of the
function, we will plot a “solid point” at (3,4) and an “open point” at (3,9). The curve comes
infinitely close to the point (3,9), but the point (3,9) itself is not actually a point on the graph
(which is why we depict it as an open point). The function is said to have a jump
discontinuity (or, for short, a jump) at x = 3.

In the above example, we may refer to the x value 3 as a “transition point.” For a
piecewise-defined function, a transition point is a point in the domain where the function’s
definition transitions from one formula to another. The function may or may not have a
discontinuity at a transition point. In the above example, f(x) had a discontinuity at its
transition point. However, in the case of g(x) = x3 for x € (—o,2], 7x -6 for x € (2,), the
function has transition point 2, and it is continuous at that point.

An ordinary limit may be referred to as a two-sided limit. We can also consider one-sided
limits. For any point a in the domain of the function, we may consider the limit to the
function as x approaches a from the left, denoted lim,..,-, and we may consider the limit to
the function as x approaches a from the right, denoted lim,_,,.

For the above function f{x), lim,.s;- f{x) =9, and lim,.3, f{x) = 4.

For the above function g(x), lim,.,- g(x) = 8, and lim,.,; g(x) = 8.



The limit (i.e., the two-sided limit) exists if and only if both of the corresponding one-sided
limits exist and their values are equal; when this is the case, the value of the limit is the
common value of both one-sided limits.

For the above function f{x), lim,.; f{x) does not exist, because lim,.;_ f{x) # lim,.3, fx).

For the above function g(x), lim,., g(x) exists, because lim,.,- g(x) = lim,.,, g(x), and so
lim,., g(x) = limoo- g(x) = limypy g(x) = 8.

We now adapt these concepts to deal with a real-valued function with a two-dimensional
domain. (In other words, the domain is either the entire x,y plane or some subset of the x,y
plane.)

If we have a function z = f{x,y), and if we have a specified point (a,b) in the x,y plane, we
can ask whether or not the function is continuous at (¢,5). In order for the function to be
continuous at (a,b), all three of the following conditions must be met:

1. fla,b) must be defined. In other words, (a,b) must be in the domain of f.

2. limg,)-@p) fx,y) must exist.

3. limg,)-@p) flx,y) must be equal to fla,b), i.e., limq,).@p fx,y) = fa,b).

If any of these three conditions is not met, then the function is not continous (or is

discontinuous) at (a,b). In this case, we may say the function has a discontinuity at
(a,b).

A polynomial function in x and y is continuous on the entire x,y plane. Hence, limits of
polynomial functions may be evaluated by “plug and chug.” For instance,

limy)-23) (x? = Sxy +y?) = -17.

A rational function in x and y is continuous at all points (x,y) where the denominator is

nonzero. Hence, limits at such points may be evaluated by “plug and chug.” For instance,
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A square root function in x and y is continuous in any region where the radicand is
nonnegative. For example f{x,y) = /Xy is continuous in the first and third quadrants. Thus,

lim x)-(6,10) /Xy May be found by “plug and chug,” giving us /60 or 2/15.

More generally, a composition of continuous functions is continuous. Let us make this idea
more precise. Suppose / is a function of one variable, and is continuous on given set S.
Suppose g(x,y) is a continuous for all (x,y) in a given region R of the x,y plane. Suppose
that for every (x,y) € R, g(x,y) € S. Then the composite function f(x,y) = h(g(x,y)) is
continuous for all (x,y) in the region R.

Another way to state the above idea is this: If the function g(x,y) is continuous at the point
(a,b), and if the function % is continuous at the point g(a, b), then the function A(g(x,y)) is
continuous at the point (a,b).



For instance, 4(u) = Inu is continuous for all u € (0,%0). The function g(x,y) = x> +y> +4
(which is a circular paraboloid) continuous on the entire x,y plane. For every (x,y) in the x,y
plane, g(x,y) € (0,0). Then the function Z(g(x,y)) = In(x? +y? +4) is continuous on the x,y
plane.

Thus, lim)-60) In(x? + > + 4) may be found by “plug and chug,” giving us 1n40, which is
about 3.6889.

If f{x,y) is not continuous at (a,b), then lim,)-«s f(x,y) cannot be evaluated by plug and
chug, but this does not mean the limit doesn’t exist.
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If lim . ,)-(0,0) flx, ) exists, then when we approach the point (a,b) from any direction, we will
obtain the same limiting value. Furthermore, we are not restricted to approaching the point
(a,b) along a straight path. We should be able to approach (a,b) along any path, whether
linear or nonlinear, and still approach the same limiting value.

The limit to f(x,y) as we approach the point (a,b) along a specified curve in the x,y plane is
known as a path-specific limit. (The point (a,5) must lie on the specified curve.) The
curve may be a line (which we think of as a straight curve). These kinds of limits are often
easy to evaluate, by means of an algebraic substitution.

For instance, the limit to f{x,y) = % as (x,y) approaches (0,0) along the line y = 3x
may be found by substituting 3x in place of y. Then flx,y) = 220GV 60" _ le? _ £, s0
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the limit is % On the other hand, the limit to this function as (x,y) approaches (0,0) along
the line y = —2x may be found by substituting —2x in place of y. Then
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In order for lim( ). f(x,») to exist, all possible path-specific limits as (x,y) approaches
(a,b) must exist, and they must all have the same value; when this is the case, the value of
the limit is the common value of all path-specific limits. Note: When we refer to “all
possible path-specific limits as (x,y) approaches (a,b),” we mean the limits as (x,y)



approaches (a,b) along all possible paths—i.e., along every possible curve containing the
point (a,b).

lim(, )~ flx,y) does not exist if any path-specific limit does not exist, or if any two
path-specific limits have different values.
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Thus, lim).@s —5 > does not exist.
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Recall that in Calculus I, lim,., f{x) may be thought of as a two-sided limit, and it exists if
and only if both one-sided limits exist and are equal. Analagously, lim,).» f(x,y) may be
thought of as an all-path limit, and it exists if and only all path-specific limits exist and are
equal.

Consider f(x,y) = %
e To find the limit to this function as (x,y) approaches (0,0) along any line y = mx, we

substitute mx in place of y, giving us ——, which approaches 0 as x approaches 0,

1+m*x2’

regardless of the value of m.
e To find the limit to this function as (x,y) approaches (0,0) along any parabola
y = ax?, we substitute ax? in place of y, giving us <> which approaches 0 as x
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approaches 0, regardless of the value of a.

e To find the limit to this function as (x,y) approaches (0,0) along any parabola
x = by?, we substitute by? in place of x, giving us bfil , and so this path-specific limit
bffl , Which obviously depends on b. In other words, for different
values of b, we get different limits. For instance, when b = 1, i.e., when we
approach along the parabola x = y2, we get a limit of %, but when b = -1, we get a

limit of —%.
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All the above concepts can be adapted to deal with a real-valued function with a
three-dimensional domain.

If we have a function w = f(x,y,z), and if we have a specified point (a,b,¢) in x,y,z space, we
can ask whether or not the function is continuous at (a,b,c). In order for the function to be
continuous at (a,b,c), all three of the following conditions must be met:

1. fla,b,c) must be defined. In other words, (a,b,c) must be in the domain of /.

2. limy)s(an0 fIX,),2) must exist.

3. limgy2)-@be) flx,1,2) must be equal to f(a,b,c), i.e., lim, )~ pe) fX,1,2) = fla,b,c).
If any of these three conditions is not met, then the function is not continous (or is

discontinuous) at (a,b,¢). In this case, we may say the function has a discontinuity at
(a,b,c).



