
Limits and Continuity

In Calculus I, we learned the concept of continuity. If we have a function y  fx, and if
we have a specified value of x, such as a, we can ask whether or not the function is
continuous at a. In order for the function to be continuous at a, all three of the following
conditions must be met:
1. fa must be defined. In other words, a must be in the domain of f.
2. limxa fx must exist.
3. limxa fx must be equal to fa, i.e., limxa fx  fa.
If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.

Bear in mind, we adhere to the following conventions:
 The domain of the function excludes any values of x for which fx is imaginary or

undefined. For instance, the domain of fx  x excludes all negative values of x,
and the domain of fx  1

x3 excludes 3.

 When we say that a limit “exists,” we mean it has a real-number value, not an
imaginary value and not an infinite value. Thus, limx2 1  x does not exist, and
limx0

1
x2

does not exist. We can say limx0
1
x2

 , but this does not alter the fact
that limx0

1
x2

does not exist!

Books or teacher may sometimes cite only the third condition listed above. Their thinking is
that saying limxa fx  fa presupposes both condition #1 and condition #2. However, I
believe it is best to think of it as three separate conditions, and to check them in the order I
have specified. First check condition #1; if it fails, go no further. If condition #1 is met, then
check condition #2; if it fails, go no further. If condition #2 is met, then check condition #3.

If we know in advance (based on some previously established theorem) that the function f is
continuous at a value a, then we can evaluate limxa fx by simple “plug and chug,” i.e., by
simply evaluating fa.

For instance, we have a theorem that says a polynomial function is continuous for all real
values of x. Hence, to evaluate limx5 3x2  7x  4, we just plug in 5 for x, giving us 44.

We also have a theorem that says a rational function (i.e., a ratio of polynomials) is
continuous for any value of x where the denominator is nonzero. Hence, to evaluate

limx6
x  15

x  3
, we just plug in 6 for x, giving us 7.

If fx is not continuous at a, then limxa fx cannot be evaluated by plug and chug, but this
does not mean the limit doesn’t exist. It may or may not exist. We have to explore further.
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For instance, you cannot evaluate limx0
1
x sinx by plug and chug, because fx  1

x sinx has
a discontinuity at 0. Instead, we may use L’Hospital’s Rule: limx0

1
x sinx  limx0 cosx  1.

(Alternatively, we could apply the Squeeze Theorem, since the function fx is sandwiched
between the functions y  1 and y  cosx. 

Limits at discontinuities can sometimes be evaulated via algebraic manipulations.

For instance, to find limx5
x2  7x  10

x2  25
, we may reduce the ratio to x  2

x  5
, so

limx5
x2  7x  10

x2  25
 limx5

x  2

x  5
 3

10 .

Similarly, to find limx1
x2  1

2x  3  5
, we may rationalize the denominator and then reduce the

ratio to
x  1 2x  3  5 

2 , so limx1
x2  1

2x  3  5
 limx1

x  1 2x  3  5 

2  0.

A piecewise-defined function is a function defined not by one formula, but by two or more
formulas, where each formula applies to a specified interval and the intervals are
non-overlapping. For example, consider the function fx  x2 for x  , 3,  2

3 x  6 for
x  3,. This function is piecewise-defined. Its domain is ,. Bear in mind, it is not
two functions, it is one function, but the function is defined by two different formulas. The
formula x2 applies applies when x  3. The formula  2

3 x  6 applies when x  3. Because
the intervals , 3 and 3, are non-overlapping, our definition will never produce two
values of y from one value of x (in other words, it is a legitimate function). Its graph will
pass the vertical line test. Its graph consists of part of the parabola y  x2 “spliced together”
with part of the line y   2

3 x  6. Note that f3  4. When drawing the graph of the
function, we will plot a “solid point” at 3,4 and an “open point” at 3,9. The curve comes
infinitely close to the point 3,9, but the point 3,9 itself is not actually a point on the graph
(which is why we depict it as an open point). The function is said to have a jump
discontinuity (or, for short, a jump) at x  3.

In the above example, we may refer to the x value 3 as a “transition point.” For a
piecewise-defined function, a transition point is a point in the domain where the function’s
definition transitions from one formula to another. The function may or may not have a
discontinuity at a transition point. In the above example, fx had a discontinuity at its
transition point. However, in the case of gx  x3 for x  , 2, 7x  6 for x  2,, the
function has transition point 2, and it is continuous at that point.

An ordinary limit may be referred to as a two-sided limit. We can also consider one-sided
limits. For any point a in the domain of the function, we may consider the limit to the
function as x approaches a from the left, denoted limxa, and we may consider the limit to
the function as x approaches a from the right, denoted limxa.

For the above function fx, limx3 fx  9, and limx3 fx  4.

For the above function gx, limx2 gx  8, and limx2 gx  8.
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The limit (i.e., the two-sided limit) exists if and only if both of the corresponding one-sided
limits exist and their values are equal; when this is the case, the value of the limit is the
common value of both one-sided limits.

For the above function fx, limx3 fx does not exist, because limx3 fx  limx3 fx.

For the above function gx, limx2 gx exists, because limx2 gx  limx2 gx, and so
limx2 gx  limx2 gx  limx2 gx  8.

We now adapt these concepts to deal with a real-valued function with a two-dimensional
domain. (In other words, the domain is either the entire x,y plane or some subset of the x,y
plane.)

If we have a function z  fx,y, and if we have a specified point a,b in the x,y plane, we
can ask whether or not the function is continuous at a,b. In order for the function to be
continuous at a,b, all three of the following conditions must be met:
1. fa,b must be defined. In other words, a,b must be in the domain of f.
2. limx,ya,b fx,y must exist.
3. limx,ya,b fx,y must be equal to fa,b, i.e., limx,ya,b fx,y  fa,b.

If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a,b. In this case, we may say the function has a discontinuity at
a,b.

A polynomial function in x and y is continuous on the entire x,y plane. Hence, limits of
polynomial functions may be evaluated by “plug and chug.” For instance,
limx,y2,3 x2  5xy  y2  17.

A rational function in x and y is continuous at all points x,y where the denominator is
nonzero. Hence, limits at such points may be evaluated by “plug and chug.” For instance,
limx,y7,2

x2  5y

2x  y3
 39

22 .

A square root function in x and y is continuous in any region where the radicand is
nonnegative. For example fx,y  xy is continuous in the first and third quadrants. Thus,
limx,y6,10 xy may be found by “plug and chug,” giving us 60 or 2 15 .

More generally, a composition of continuous functions is continuous. Let us make this idea
more precise. Suppose h is a function of one variable, and is continuous on given set S.
Suppose gx,y is a continuous for all x,y in a given region R of the x,y plane. Suppose
that for every x,y  R, gx,y  S. Then the composite function fx,y  hgx,y is
continuous for all x,y in the region R.

Another way to state the above idea is this: If the function gx,y is continuous at the point
a,b, and if the function h is continuous at the point ga,b, then the function hgx,y is
continuous at the point a,b.

3



For instance, hu  lnu is continuous for all u  0,. The function gx,y  x2  y2  4
(which is a circular paraboloid) continuous on the entire x,y plane. For every x,y in the x,y
plane, gx,y  0,. Then the function hgx,y  lnx2  y2  4 is continuous on the x,y
plane.

Thus, limx,y6,0 lnx2  y2  4 may be found by “plug and chug,” giving us ln40, which is
about 3.6889.

If fx,y is not continuous at a,b, then limx,ya,b fx,y cannot be evaluated by plug and
chug, but this does not mean the limit doesn’t exist.

To find limx,y2,1
x2  3xy  10y2

2x2  xy  6y2
, we may reduce the ratio to x  5y

2x  3y
, so

limx,y2,1
x2  3xy  10y2

2x2  xy  6y2
 limx,y2,1

x  5y

2x  3y
 1.

To find limx,y4,1
xy  4y2

x  2 y
, we may rationalize the denominator and then reduce the ratio to

y x  2 y , so limx,y4,1
xy  4y2

x  2 y
 limx,y4,1 y x  2 y   4.

If limx,ya,b fx,y exists, then when we approach the point a,b from any direction, we will
obtain the same limiting value. Furthermore, we are not restricted to approaching the point
a,b along a straight path. We should be able to approach a,b along any path, whether
linear or nonlinear, and still approach the same limiting value.

The limit to fx,y as we approach the point a,b along a specified curve in the x,y plane is
known as a path-specific limit. (The point a,b must lie on the specified curve.) The
curve may be a line (which we think of as a straight curve). These kinds of limits are often
easy to evaluate, by means of an algebraic substitution.

For instance, the limit to fx,y  x2  2xy  y2

x2  y2
as x,y approaches 0,0 along the line y  3x

may be found by substituting 3x in place of y. Then fx,y  x2  2x3x  3x2

x2  3x2
 16x2

10x2
 8

5 , so

the limit is 8
5 . On the other hand, the limit to this function as x,y approaches 0,0 along

the line y  2x may be found by substituting 2x in place of y. Then
fx,y  x2  2x2x  2x2

x2  2x2
 x2

5x2
 1

5 , so the limit is 1
5 . More generally, the limit to this

function as x,y approaches 0,0 along the line y  mx may be found by substituting mx in
place of y. Then fx,y  x2  2xmx  mx2

x2  mx2
 x2  2mx2  m2x2

x2  m2x2
 1  2m  m2

1  m2
, so the limit is

1  2m  m2

1  m2
. For different values of m, we get different limits.

In order for limx,ya,b fx,y to exist, all possible path-specific limits as x,y approaches
a,b must exist, and they must all have the same value; when this is the case, the value of
the limit is the common value of all path-specific limits. Note: When we refer to “all
possible path-specific limits as x,y approaches a,b,” we mean the limits as x,y
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approaches a,b along all possible paths–i.e., along every possible curve containing the
point a,b.

limx,ya,b fx,y does not exist if any path-specific limit does not exist, or if any two
path-specific limits have different values.

Thus, limx,ya,b
x2  2xy  y2

x2  y2
does not exist.

Recall that in Calculus I, limxa fx may be thought of as a two-sided limit, and it exists if
and only if both one-sided limits exist and are equal. Analagously, limx,ya,b fx,y may be
thought of as an all-path limit, and it exists if and only all path-specific limits exist and are
equal.

Consider fx,y  3xy2

x2  y4
.

 To find the limit to this function as x,y approaches 0,0 along any line y  mx, we
substitute mx in place of y, giving us 3xm2

1  m4x2
, which approaches 0 as x approaches 0,

regardless of the value of m.
 To find the limit to this function as x,y approaches 0,0 along any parabola

y  ax2, we substitute ax2 in place of y, giving us 3a2x5

1  a4x6
, which approaches 0 as x

approaches 0, regardless of the value of a.
 To find the limit to this function as x,y approaches 0,0 along any parabola

x  by2, we substitute by2 in place of x, giving us 3b
b4  1

, and so this path-specific limit

has a value of 3b
b4  1

, which obviously depends on b. In other words, for different

values of b, we get different limits. For instance, when b  1, i.e., when we
approach along the parabola x  y2, we get a limit of 3

2 , but when b  1, we get a
limit of  3

2 .

Consequently, limx,y0,0
3xy2

x2  y4
does not exist.

All the above concepts can be adapted to deal with a real-valued function with a
three-dimensional domain.

If we have a function w  fx,y, z, and if we have a specified point a,b,c in x,y, z space, we
can ask whether or not the function is continuous at a,b,c. In order for the function to be
continuous at a,b,c, all three of the following conditions must be met:
1. fa,b,c must be defined. In other words, a,b,c must be in the domain of f.
2. limx,y,za,b,c fx,y, z must exist.
3. limx,y,za,b,c fx,y, z must be equal to fa,b,c, i.e., limx,y,za,b,c fx,y, z  fa,b,c.

If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a,b,c. In this case, we may say the function has a discontinuity at
a,b,c.
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